Markov partitions for toral ℤ 2 -rotations featuring Jeandel–Rao Wang shift and model sets

نویسندگان

چکیده

We define a partition $\mathcal{P}_0$ and $\mathbb{Z}^2$-rotation ($\mathbb{Z}^2$-action defined by rotations) on 2-dimensional torus whose associated symbolic dynamical system is minimal proper subshift of the Jeandel-Rao aperiodic Wang shift 11 tiles. another $\mathcal{P}_\mathcal{U}$ $\mathbb{T}^2$ equal to 19 This proves that Markov for $\mathbb{T}^2$. prove in both cases toral maximal equicontinuous factor subshifts set fiber cardinalities map $\{1,2,8\}$. The two are uniquely ergodic isomorphic as measure-preserving systems $\mathbb{Z}^2$-rotations. It provides construction these shifts model sets 4-to-2 cut project schemes. A do-it-yourself puzzle available appendix illustrate results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heaviness in Toral Rotations

Abstract. We investigate the dimension of the set of points in the d-torus which have the property that their orbit under rotation by some α hits a fixed closed target A more often than expected for all finite initial portions. An upper bound for the lower Minkowski dimension of this strictly heavy set H(A,α) is found in terms of the upper Minkowski dimension of ∂A, as well as k, the Diophantin...

متن کامل

Projection Quasicrystals I: Toral Rotations

We present a systematic treatment of the commutative and non-commutative topol-ogy of quasicrystal point patterns and tilings produced in nite dimensional Euclidean space by the projection or strip method. With no conditions on the projection plane and with a general acceptance domain only weakly constrained, we examine two sets of points constructed by the projection method, one a nite decorat...

متن کامل

Quotients of `∞(z,z) and Symbolic Covers of Toral Automorphisms

This note gives an account of the algebraic construction of symbolic covers and representations of ergodic automorphisms of compact abelian groups. For expansive toral automorphisms this subject was initiated by A.M. Vershik.

متن کامل

On the nodal sets of toral eigenfunctions

We study the nodal sets of eigenfunctions of the Laplacian on the standard d-dimensional flat torus. The question we address is: Can a fixed hypersurface lie on the nodal sets of eigenfunctions with arbitrarily large eigenvalue? In dimension two, we show that this happens only for segments of closed geodesics. In higher dimensions, certain cylindrical sets do lie on nodal sets corresponding to ...

متن کامل

Central limit theorem for Z d + - actions by toral endomorphisms

In this paper we prove the central limit theorem for the following multisequence N1 ∑ n1=1 ... Nd ∑ nd=1 f(A1 1 ...A nd d x) where f is a Hölder’s continue function, A1, ..., Ad are s× s partially hyperbolic commuting integer matrices, and x is a uniformly distributed random variable in [0, 1]. Then we prove the functional central limit theorem, and the almost sure central limit theorem. The ma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Henri Lebesgue

سال: 2021

ISSN: ['2644-9463']

DOI: https://doi.org/10.5802/ahl.73